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A new dynamical core for numerical weather prediction (NWP) based

on the spectral element Eulerian-Lagrangian (SEEL) method is presented.

This paper represents a departure from previously published work on solv-

ing the atmospheric equations in that the horizontal operators are all writ-

ten, discretized, and solved in 3D Cartesian space. The advantages of

this new methodology are: the pole singularity which plagues all grid-

point methods disappears, the horizontal operators can be approximated

by local high-order elements, the Eulerian-Lagrangian formulation permits

extremely large time-steps, and the fully-implicit Eulerian-Lagrangian for-

mulation only requires the inversion of a 2D Helmholtz operator. In order to

validate the SEELAM model, results for four test cases are shown. These

are: the Rossby-Haurwitz waves number 1 and 4, and the Jablonowski-

Williamson balanced initial state and baroclinic instability tests. Compar-

isons with four well-established operational models show that SEELAM is

as accurate as spectral transform models.

1. INTRODUCTION
Because of the changing trends in high performance computers from large vector machines to

distributed-memory architectures, numerical methods that decompose the physical domain into
smaller pieces have been receiving significant attention. This new focus on local methods is es-
pecially true in the atmospheric sciences where very large models covering the entire globe are run
in time-scales ranging from days (in numerical weather prediction) to thousands of years (in cli-
mate simulations). Finite difference and finite element methods are two such methods which decom-
pose the domain locally thereby facilitating their implementation on distributed-memory computers.
However, one of the biggest disadvantages of these methods is that traditionally they have not been
able to compete, in terms of accuracy, with spectral transform methods which are typically used
operationally in numerical weather prediction (NWP) and climate modeling. For example, spectral
transform models are used by the National Center for Environmental Prediction [8], the European
Centre for Medium-Range Forecasts [9], the National Center for Atmospheric Research [3], and the
U.S. Navy [4].

Spectral element methods combine the local domain decomposition property of finite element
methods with the high-order accuracy of spectral transform methods. In other words, spectral
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elements are as local as finite element methods, and thereby can be used as efficiently on distributed-
memory computers while sustaining the same level of accuracy obtained with spectral transform
methods. These methods are essentially high-order finite element methods where the grid points
are chosen to be the Legendre-Gauss-Lobatto (LGL) points. This choice of grid points allows for
stable high-order interpolations and results in efficient numerical integration strategies because the
LGL points are also used as the quadrature points in the numerical integration required by the weak
integral formulation common to all Galerkin methods.

Using the spectral element method we have developed a hydrostatic primitive equation model
for NWP [2]. However, in that work the time integration scheme used was an explicit Eulerian
method. Although explicit time-integration methods for atmospheric simulations can be incredibly
fast and quite accurate, their main disadvantage is that small time steps must be observed in order
to maintain stability. The reason for this prohibitively small time-step is due to the fast moving
gravity waves. These waves require a small time-step while only carrying a very small percent of
the total energy in the system. In order to ameliorate this rather stringent time-step restriction
atmospheric scientists have tried various approaches such as using a larger differencing stencil for
the gravity wave terms thereby effectively reducing the Courant number, and discretizing the gravity
wave terms implicitly in time. We can easily employ the first strategy in our current formulation,
that is using a larger differencing stencil for the gravity wave terms, but this is more typically
done to avoid the inf-sup (Babuska-Brezzi) condition. However, discretizing the gravity wave terms
implicitly in time is a much more effective way of increasing the time-step.

After the gravity wave terms have been successfully discretized the next set of terms responsible for
controlling the maximum time-step are the advection terms. In order to use increasingly larger time
steps atmospheric scientist have turned to Lagrangian methods for treating these recalcitrant terms.
By rewriting the equations in Lagrangian form the troublesome advection terms are absorbed into
the total derivative. Thus the equations in this form are now discretized in time along characteristics
which results in a much more stable numerical method due to the disappearance of the Courant-
Friedrichs-Lewy (CFL) condition.

In the current paper we combine a Lagrangian method with high order basis functions as we showed
in [1] and extend this hybrid method to the solution of the hydrostatic atmospheric equations. The
allure of this method is that it achieves the same order of accuracy obtained with exponentially high
order explicit Eulerian methods [2] while permitting time-steps at least 5 times larger.

2. ATMOSPHERIC EQUATIONS
In this paper we show how to solve the hydrostatic primitive equations which describe the motion

of the atmosphere. We assume dry physics (i.e., no physical parameterization) and thus only take
into account the dynamical processes. The equations we solve are

∂π

∂t
+ ∇ · (πu) +

∂

∂σ
(πσ̇) = 0 (1)

∂u

∂t
+ u ·∇u + σ̇

∂u

∂σ
= −2Ωz

a2
(x× u)−∇ϕ− cpθ

∂P

∂π
∇π (2)

∂θ

∂t
+ u ·∇θ + σ̇

∂θ

∂σ
= 0 (3)

∂ϕ

∂P
= −cpθ (4)
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where

π = ps − pt , σ =
p− pt

π

and (a,Ω) are the radius and angular rotation of the earth, respectively. The prognostic variables
for these equations are q = (π,u, θ)T , while σ̇ and ϕ represent diagnostic variables.

3. TEMPORAL DISCRETIZATION
The Lagrangian form of the conservation equations are

dπ

dt
= −π

(
∇ · u +

∂σ̇

∂σ

)
(5)

du

dt
= −2Ωz

a2
(x× u)−∇ϕ− cpθ

∂P

∂π
∇π (6)

dθ

dt
= 0 (7)

where the Lagrangian derivative is

d

dt
=

∂

∂t
+ u ·∇.

Discretizing the conservation equations in time by the second order backward difference formula
yields

πn+1 − 4
3πñ + 1

3πñ−1

∆t
= −2

3
π

(
∇ · u +

∂σ̇

∂σ

)n+1

(8)

un+1 − 4
3uñ + 1

3uñ−1

∆t
= −2

3

[
2Ωz

a2
(x× u) + ∇ϕ + cpθ

∂P

∂π
∇π

]n+1

(9)

θn+1 − 4
3θñ + 1

3θñ−1

∆t
= 0 (10)

where the variables qñ and qñ−1 denote Lagrangian departure point values.

3.1. Linearization of the Equations
To avoid having to solve a nonlinear problem we linearize the equations as follows. The surface

pressure is linearized about the reference state π∗ = 1000 hPa as such

π̂ = π − π∗

where π̂ now denotes the perturbation surface pressure. In addition, let us introduce the reference
potential temperature

θ∗ =
T ∗

P (π∗)

with T ∗ = 300◦ Kelvin. It should be understood that the reference potential temperature is a
function of the vertical coordinate σ because the Exner function varies with σ.

3.1.1. Surface Pressure Equation
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With the above linearizations the surface pressure equation takes the following form

π̂n+1 − 4
3 π̂ñ + 1

3 π̂ñ−1

∆t
= −2

3
π∗

(
∇ · u +

∂σ̇

∂σ

)n+1

. (11)

3.1.2. Hydrostatic Equation
Beginning with the finite differenced equation for geopotential

ϕk − ϕk+1 = cpθk

(
Pk+1/2 − Pk

)
+ cpθk+1

(
Pk+1 − Pk+1/2

)
where k = 1, ..., Nlev and Nlev represents the number of vertical levels in the model, we can then
take a Taylor series expansion about the reference surface pressure π∗ and potential temperature θ∗

yielding

ϕk − ϕk+1 = cpθk

(
P ∗

k+1/2 − P ∗
k

)
+ cpθk+1

(
P ∗

k+1 − P ∗
k+1/2

)
(12)

+ cpθ
∗
k

(
∂P ∗

k+1/2

∂π
− ∂P ∗

k

∂π

)
(π − π∗) + cpθ

∗
k+1

(
∂P ∗

k+1

∂π
−

∂P ∗
k+1/2

∂π

)
(π − π∗) .

Equation (12) can be written in the matrix form

Aϕ
k,lϕl = bϕ

k (θ) + cϕ
k π̂

where

bϕ
k (θ) = cpθk

(
P ∗

k+1/2 − P ∗
k

)
+ cpθk+1

(
P ∗

k+1 − P ∗
k+1/2

)
and

cϕ
k = cpθ

∗
k

(
∂P ∗

k+1/2

∂π
− ∂P ∗

k

∂π

)
(π − π∗) + cpθ

∗
k+1

(
∂P ∗

k+1

∂π
−

∂P ∗
k+1/2

∂π

)
(π − π∗) .

This results in the following geopotential gradient

∇ϕk = ∇
(
(Aϕ

k,l)
−1 [bϕ

l (θ) + cϕ
l π̂]

)
. (13)

3.1.3. Momentum Equations
Linearizing the gradient due to surface pressure yields(

cpθk
∂Pk

∂π
∇π̂

)n+1

=
(

cpθ
∗
k

∂P ∗
k

∂π
∇π̂n+1

)
.

The momentum equations then look as follows

un+1 +
2
3
∆t

(
2Ωz

a2
(x× u)

)n+1

=
4
3
uñ − 1

3
uñ−1 − 2

3
∆t

[
∇ϕn+1 + cpθ

∗ ∂P ∗

∂π
∇π̂n+1

]
which in matrix form are

Auun+1
k =

4
3
uñ

k −
1
3
uñ−1

k − 2
3
∆t

[
∇ϕn+1

k + cpθ
∗
k

∂P ∗
k

∂π
∇π̂n+1

]
.
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Substituting the linearized geopotential from Eq. (13) gives

Auun+1
k =

4
3
uñ

k −
1
3
uñ−1

k

− 2
3
∆t

[
∇

(
(Aϕ

k,l)
−1

[
bϕ
l (θn+1) + cϕ

l π̂n+1
])

+ cpθ
∗
k

∂P ∗
k

∂π
∇π̂n+1

]
and inverting yields

un+1
k = (Au)−1

 4
3uñ

k − 1
3uñ−1

k − 2
3∆t

[
∇

(
(Aϕ

k,l)
−1bϕ

l (θn+1)
)]

− 2
3∆t

[
∇

(
(Aϕ

k,l)
−1cϕ

l π̂n+1
)

+ cpθ
∗
k

∂P∗
k

∂π ∇π̂n+1
]  .

Let us now rewrite this more compactly as follows

un+1
k = (Au)−1

(
bu
k

(
θn+1

)
− 2

3
∆tcu

k

(
π̂n+1

))
(14)

where

bu
k

(
θn+1

)
=

4
3
uñ

k −
1
3
uñ−1

k − 2
3
∆t

[
∇

(
(Aϕ

k,l)
−1bϕ

l (θn+1)
)]

(15)

and

cu
k

(
π̂n+1

)
= ∇

(
(Aϕ

k,l)
−1cϕ

l π̂n+1
)

+ cpθ
∗
k

∂P ∗
k

∂π
∇π̂n+1. (16)

3.2. Calculation of Departure Point Values
The discretization of the hydrostatic primitive equations that we have described so far are complete

provided that we have a means of computing the state vector at the departure point values. Below
we describe two possible approaches which are rather similar: the semi-Lagrangian method and the
Eulerian-Lagrangian method.

3.2.1. Semi-Lagrangian Method
In the semi-Lagrangian method, the departure point values are obtained as follows. We solve the

Lagrangian pure advection problem

dq

dt
= 0 and

dx

dt
= u. (17)

In the current implementation we use a 2nd order Runge-Kutta method to solve the trajectory
equation.

3.2.2. Eulerian-Lagrangian Method
Although this method is known in the literature as the operator-integration-factor splitting method

(see [6]) we have chosen to refer to it as the Eulerian-Lagrangian method because it represents
an Eulerian approximation to the Lagrangian problem. In the Eulerian-Lagrangian method the
departure point values qñ and qñ−1 are obtained as follows. We solve the Eulerian pure advection
problem

∂qk

∂τ
+ u ·∇qk = 0 (18)
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with q(x, tñ+1−k) = q(x, tn+1−k) where the velocity field u is extrapolated from the known velocity
fields at times n− 2, n− 1, and n. In the current implementation we use a 2nd order Runge-Kutta
method to solve this equation.

4. HELMHOLTZ OPERATOR

In order to solve for the surface pressure we need to integrate Eq. (11) vertically from σ = 0 to
σ = 1 which yields

Nlev∑
k=1

π̂n+1 − 4
3 π̂ñ

k + 1
3 π̂ñ−1

k

∆t
∆σk = −2

3
π∗

Nlev∑
k=1

(∇ · u)n+1
k ∆σk −

2
3
π∗ [σ̇]σ=1

σ=0

where π̂n+1 is purposely not given a vertical level subscript to denote that the arrival surface pressure
is only a function of the 2D surface. Using the no-flux boundary condition at the top and bottom
of the atmosphere yields

Nlev∑
k=1

π̂n+1 − 4
3 π̂ñ

k + 1
3 π̂ñ−1

k

∆t
∆σk = −2

3
π∗

Nlev∑
k=1

(∇ · u)n+1
k ∆σk. (19)

Substituting un+1 from Eq. (14) and rearranging gives

Nlev∑
k=1

π̂n+1∆σk =
Nlev∑
k=1

{
4
3
π̂ñ

k −
1
3
π̂ñ−1

k − 2
3
∆tπ∗∇ ·

[
(Au)−1

(
bu
k

(
θn+1

)
− 2

3
∆tcu

k

(
π̂n+1

))]}
∆σk.

Substituting for cu
k (π̂) from Eq. (16) yields

Nlev∑
k=1

{
π̂n+1 − 4

9
∆t2π∗∇ ·

[
(Au)−1

(
∇

(
(Aϕ

k,l)
−1cϕ

l π̂n+1
)

+ cpθ
∗
k

∂P ∗
k

∂π
∇π̂n+1

)]}
∆σk =(20)

Nlev∑
k=1

{
4
3
π̂ñ

k −
1
3
π̂ñ−1

k − 2
3
∆tπ∗∇ ·

(
(Au)−1bu

k

(
θn+1

))}
∆σk.

The interesting result from this linearization is that the terms (Aϕ
k,l)

−1cϕ
l and cpθ

∗
k

∂P∗
k

∂π are not
functions of the horizontal operators and so they can be factored from the gradient and divergence
operators. Doing so yields

π̂n+1 −

[
4
9
∆t2π∗

Nlev∑
k=1

(
(Aϕ

k,l)
−1cϕ

l + cpθ
∗
k

∂P ∗
k

∂π

)
∆σk

]
∇ ·

(
(Au)−1∇π̂n+1

)
= (21)

Nlev∑
k=1

{
4
3
π̂ñ

k −
1
3
π̂ñ−1

k − 2
3
∆tπ∗∇ ·

(
(Au)−1bu

k

(
θn+1

))}
∆σk

where we have removed π̂n+1 from the summation because it is not a function of the vertical
coordinate σ. This expression tells us that the first bracketed term on the LHS can be computed
once, because it is not a function of time, and then taken as a constant in the solution of the 2D
surface pressure Helmholtz equation. To this end, we rewrite the Helmholtz equation as follows

π̂n+1 − λ∇ ·
(
(Au)−1∇π̂n+1

)
= bπ (22)
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where

λ =
4
9
∆t2π∗

Nlev∑
k=1

(
(Aϕ

k,l)
−1cϕ

l + cpθ
∗
k

∂P ∗
k

∂π

)
∆σk (23)

and

bπ =
Nlev∑
k=1

{
4
3
π̂ñ

k

1
3
π̂ñ−1

k − 2
3
∆tπ∗∇ ·

(
(Au)−1bu

k

(
θn+1

))}
∆σk. (24)

5. GRID GENERATION ON THE SPHERE

Hexahedral (a.k.a. cubic gnomonic) grids are constructed by subdividing the 6 faces of a hexa-
hedron into the desired number of quadrilateral elements, and then mapping these onto the sphere.
This approach results in the construction of a hexahedral grid with the following properties

Np = 6(nHN)2 + 2

Ne = 6(nH)2

where Np and Ne denote the number of points and elements comprising the grid. The parameter
nH refers to the number of quadrilateral elements in each direction contained in each of the 6 initial
faces of the hexahedron and N is the order of the basis functions of each of the elements. The
comparable hexahedral resolution to the spectral triangular truncation, T, can be obtained by the
expression

T = nHN.

Thus to obtain T160 we can use nH = 20 and N = 8.

6. RESULTS
6.1. Rossby-Haurwitz Waves

In order to judge the accuracy of SEELAM we have run Rossby-Haurwitz waves numbers one
and four and compared the surface pressure of SEELAM with those of NOGAPS [4] for a T160 L24
resolution after 5 day integrations. The SEELAM model uses a time step three times larger than
the NOGAPS model for these tests.

Figure 1 shows the wave one results while Fig. 2 shows the wave four results. There are slight
differences in the shape of the waves but both models yield the same maximum and minimum contour
levels. More importantly both models yield the same phase speeds.

6.2. Jablonowski-Williams Tests
The following two cases represent a new set of tests for judging the accuracy and stability of

dynamical cores. These tests are introduced in Jablonowski and Williamson [5].

6.2.1. Balanced Initial State
For this test case, the atmosphere is initially balanced. With the given initial conditions the

equations should remain balanced for an indefinite amount of time. Figure 3 shows the normalized
surface pressure, π, L2 error norm as a function of time for a four week period for SEE-AM and
SEELAM with T160 horizontal resolution and 24 vertical levels. SEE-AM is the explicit Eulerian
version presented in [2]. Note that while the error oscillates with time it remains bounded which
confirms that the initial balanced state is maintained by both models. In addition, both models give
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FIG. 1. Rossby-Haurwitz Wave Number 4: The surface pressure (hPa) for a) NOGAPS and b) SEELAM for
T160 and Nlev = 24 for a 5 day integration.
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FIG. 2. Rossby-Haurwitz Wave Number 4: The surface pressure (hPa) for a) NOGAPS and b) SEELAM for
T160 and Nlev = 24 for a 5 day integration.

identical errors up to 18 days at which point the models differ but not significantly. This result is
perhaps the most encouraging result in the suite because it confirms that the Lagrangian implicit
SEELAM is behaving like the explicit Eulerian SEE-AM.

6.2.2. Baroclinic Instability
This case is similar to the balanced initial state except that now a perturbation is added to the

initial zonal velocity. This perturbation grows until a baroclinic instability develops and then breaks
near day nine. Figure 4 shows the minimum surface pressure ps as a function of time for SEELAM
against various models including the NCAR spectral transform model [3], the NASA Goddard finite
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FIG. 3. Jablonowski-Williamson Balanced Initial State: The normalized surface pressure, π, L2 error as a
function of days for SEE-AM (dashed line) and SEELAM (solid line) for T160 (nH = 20 and N = 8) with 24 vertical
levels.

volume model [10], and the German Weather Service icosahedral finite difference model [7] which
we denote as GME; the results of the latter three models are courtesy of Christiane Jablonowski.
The results in Fig. 4 are summarized as follows. SEELAM compares well with the three established
models. The lower order NASA and GME models give very similar results. Finally, the higher order
NCAR and SEELAM models compare extremely well with each other.

7. CONCLUSION

A new dynamical core for numerical weather prediction (NWP) based on the spectral element
Eulerian-Lagrangian (SEEL) method is presented. In a previous paper [2] we showed the advantages
of using spectral elements in 3D Cartesian coordinates. In this paper we have extended the explicit
Eulerian method described in [2] to an implicit Lagrangian method. The advantage of using the
implicit Eulerian-Lagrangian method is that it permits time steps 5 times larger than the explicit
Eulerian method. This increase in permissible time step should translate into increased efficiency
of the model. While the SEELAM model has not yet been fully tested it has passed its first four
tests demonstrating that it behaves similarly to well-established climate and weather prediction
models. These models include: the U.S. Navy’s NWP model and the NCAR climate model. In
order to become competitive with these well-established models the iterative solvers for inverting
the resulting Helmholtz operator must be fully optimized. This is the topic of future work.
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FIG. 4. Jablonowski-Williamson Baroclinic Instability: The minimum surface pressure (hPa) as a function
of days for the NASA (finite volume), GME (finite-difference), NCAR (spectral transform), and SEELAM (spectral
element with nH = 20 and N = 8) models using 26 vertical levels. (The data for the first three models are courtesy
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